A CAMPAGNA AND AND AND AND AND AND AND AND AND A	(Pages:
	, ,

Reg. No. :

Name :

Sixth Semester B.Tech. Degree Examination, June 2015 (2008 Scheme)

2)

08.605 : ANTENNA AND WAVE PROPAGATION (T)

Time: 3 Hours

Max. Marks: 100

PART-A

Answer all questions. Each question carries 4 marks.

1. Differentiate between beamwidth and bandwidth of an antenna.

- 2. What is the physical significance of radiation resistance?
- 3. What are the main applications of rhombic antenna?
- 4. What is pattern multiplication?
- 5. What are grating lobes?
- 6. What are the advantages of Dolph Chebyshev method in designing arrays?
- 7. What is duct propagation?
- 8. Define the terms MUF and OWF.
- 9. What is virtual height and how it is measured?
- 10. Derive the expression for critical frequency.

(10×4=40 Marks)

PART-B

Answer any two questions from each Module.

Module - I

- 11. a) A thin dipole antenna is $\lambda/15$ long. If its loss resistance is 1.5 Ω , find its radiation resistance.
 - b) Derive expression for the relation between directivity and effective area of an antenna.

- 12. Derive expressions for directivity and radiation resistance of short dipole.
- 13. Explain on methods used for the measurement of directivity and impedance of an antenna.

Module - II

- 14. Explain the working of parabolic dish antenna. What is the significance of f/D ratio?
- 15. Draw the diagrams and explain the working of helical antenna.
- 16. Find the resultant radiation pattern of uniform linear array with n=4, $d=\frac{\lambda}{4}$ and $\alpha=\pi$.

Module - III

- 17. Derive the expression for effective earth's radius.
- 18. a) Explain the effects of earth's magnetic field.
 - b) A transmitter transmits signal with power P = 40 KWatts. The directive gain of the antenna is 1.74. Calculate the electric field intensity at a distance of 30 km from the transmitter.
- 19. Explain on:
 - I) VLF and ELF propagation in sea water.
 - II) VHF and UHF mobile radio propagation.

(6×10=60 Marks)